

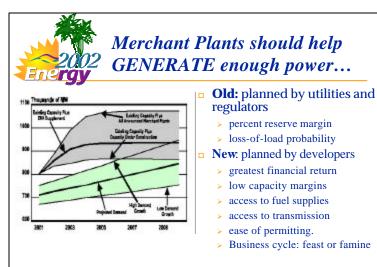
An Energy Efficiency Workshop & Exposition

Palm Springs, California

Distributed Generation and Reliability

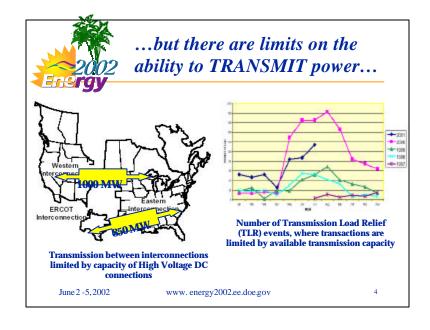
US Department of Energy Federal Energy Management Program

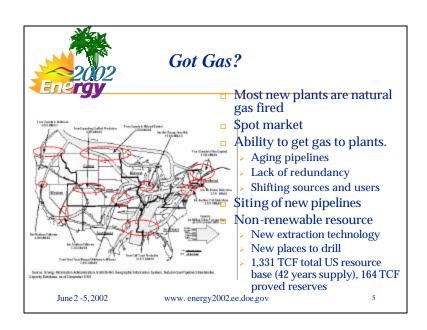
Andy Walker PhD PE National Renewable Energy Lab 1617 Cole Blvd Golden, CO 80401 Andy_walker@nrel.gov



NERC System Reliability

- System Adequacy
 - > Available generation > demand plus losses
 - Transmission capability> overload condition
 - Acceptable voltage
- System Security
 - > Static security: adequacy if equipment removed
 - Transient security: system returns to synchronous state after sudden loss of equipment.


June 2 -5,2002


Source: H. Merrill, Electric Power Engineering www. energy2002.ee.doe.gov

Source: Reliability Assessment 2001–2010 North American Electric Reliability Council October 16, 2001

June 2 -5, 2002 www. energy 2002 ee. doe gov 3

System Disturbances in 2000

- □ 58 disturbances
 - > 28 severe weather.
 - > 12 personnel actions
 - > 10 equipment failure
- □ 3,236,000 customers interrupted

Source: NERC

June 2 -5, 2002

www.energy2002.ee.doe.gov

Deregulation

- Pre-deregulation reliability
 - voluntary efforts and "peer pressure" to ensure compliance with NERC standards.
 - > users and operators of the system **cooperated** with each other
- Post-deregulation
 - > users and operators compete rather than cooperate
 - effective recourse and mandatory enforcement of a fair and impartial single bulk electric system reliability standard must be established
 - > NERC has proposed self-regulating reliability organization (SRRO) to develop and enforce rules with FERC

June 2 -5, 2002

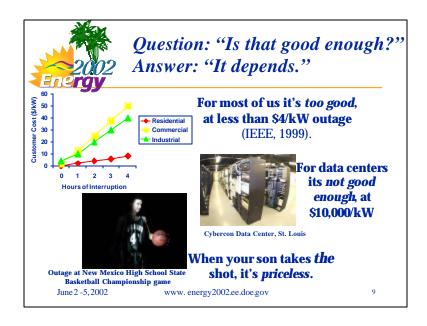
www.energy2002.ee.doe.gov

Average Utility System Availability 99.97% ("3 nines")

SAIDI2 (minutes per year)

Typical reliability index values for U.S. utilities. SAIFI1 (events per year)

Average of top 25%	0.90	54
Average of 50% - 75%	1.10	90
Average	1.26	117
Average of 25% - 50%	1.45	138
Average of bottom 25%	3.90	423


 $^{^{\}rm 1}\,{\rm SAIFI}$ (System Average Interruption Frequency Index) — the average number of interruptions experienced by customers per year.

Source 1995 IEEE survey

June 2 -5, 2002

www.energy2002.ee.doe.gov

 $^{^{\}rm 2}\,{\rm SAIDI}$ (System Average Interruption Duration Index) — the average number of interruption minutes experienced by customers per year.

At a crossroads: communal response or every-man-for-himself?

- Reliability is costly
- **Old**: Reliability used to be a "public good" with broad cost recovery. Regulators set high standards, which benefited the few who needed it.
- **New**: Different levels of reliability will be provided to customers with different reliability needs, and the will to pay more for it.
 - Differentiated service
 - Multiple feeders
 - Preferential service
 - On-site solutions

June 2 - 5, 2002

www.energy2002.ee.doe.gov

Enter the Customer-based solution.

Electric Power Technologies

- Regulating transformers
- > Surge suppression
- Uninterruptible Power Supply (UPS)
- Distributed Generation
- > Multiple Utility Feeders

Demand Side Measures

- Data/process management
- Daylighting
- Passive Solar Heating
- Cooling Load Avoidance
- Natural Ventilation

June 2 - 5, 2002

www.energy2002.ee.doe.gov

. .

Uninterruptible Power Supply

- UPS for momentary interruptions and voltage sags
 - ▶ Lead Acid Batteries (\$13/kW sec)
 - Ultra Capacitor (\$70/kW sec)
 - Superconducting (\$200/kW sec)
 - Rotary (flywheel)

Source: Brown and Marshall, ABB Consulting www. energy2002.ee.doe.gov

June 2 -5,2002

Distributed Generation

- □ For longer term outages, need no T&D
 - ▶ Internal Combustion Engines (91.2-95.8%)
 - > Gas Turbines (90.0 93.3%)
 - > Fuel Cells (63.5 -99%)
 - Photovoltaics (86.4-96.2%)
 - Wind Power

Sources: GRI, DODFuelCell, SMUD, June 2 -5,2002 www. energy2002.ee.doe.gov

13

Mind Your P's and Q's...

- □ P = probability resource is available
- Q = probability resource is unavailable
- $\hfill P_{utility} = 0.9997, Q_{utility} = 0.0003$
- □ Consider 800 kW reciprocating engine generator $P_{gen} = 0.9120$, $Q_{gen} = 0.088$
- □ Availability of EITHER utility OR generator = P_{utility}P_{gen} + P_{utility}Q_{gen} + P_{gen}Q_{utility} = 0.99997
- □ An improvement from "3 nines" to "4 nines" due to the generator

June 2 -5, 2002

www.energy2002.ee.doe.gov

How many generators do you need to get the "nines" you need?

P+Q=1

Total number of generators = n

Reserve is excess of those to meet the load = r

 $(P+Q)^n=1$

 $P^{n} + nP^{n-1}Q + n(n-1)P^{n-2}Q^{2}/2! + + =1$

Add up the first r+1 terms to find the probability that system will operate at the desired capacity, then iterate again with the new n

June 2 -5, 2002

www.energy2002.ee.doe.gov

- 1

Optimization Example

- □ Say we need 12 MW with 98% reliability
 - > 34 * 400 kW generators = 13,600 kW (n=34 r=4, CF=.635)
 - > 23 * 600 kW generators = 13,800 kW (n=23, r=3, CF=.626)
 - ➤ 13*1,200 kW generators = 15,600 kW (n=13, r=3, CF=.554)
- This argues for a modular plant with many small generators, BUT, cost per kW goes down with generator size.
- In this example, the 600 kW size results in the lowest cost of power.

June 2 -5, 2002

www.energy2002.ee.doe.gov

- 320 kW Credit Card Processing
- Outage losses \$6,000,000/hour
- Feeders from 2 different substations
- □ Two 1250 kW Diesel Generators
- □ Four 200 kW Fuel Cells
- 4 Rotary UPSs
- Calculated availability 99.999995% ("7 nines")

Source: Thomas J. Ditoro, HDR Architecture, Inc. www.energy2002.ee.doe.gov

17

June 2 - 5, 2002

An Energy Efficiency Workshop & Exposition
Palm Springs, California

Thank You

From the US DOE Federal Energy Management Program